[Codewars]Playing with digits

89 --> 8¹ + 9² = 89 * 1   得出原本的數的多少倍數等於 分拆次方數

 

Some numbers have funny properties. For example:

89 --> 8¹ + 9² = 89 * 1

695 --> 6² + 9³ + 5⁴= 1390 = 695 * 2

46288 --> 4³ + 6⁴+ 2⁵ + 8⁶ + 8⁷ = 2360688 = 46288 * 51

Given a positive integer n written as abcd... (a, b, c, d... being digits) and a positive integer p we want to find a positive integer k, if it exists, such as the sum of the digits of n taken to the successive powers of p is equal to k * n. In other words:

Is there an integer k such as : (a ^ p + b ^ (p+1) + c ^(p+2) + d ^ (p+3) + ...) = n * k

If it is the case we will return k, if not return -1.

Note: n, p will always be given as strictly positive integers.

digPow(89, 1) should return 1 since 8¹ + 9² = 89 = 89 * 1
digPow(92, 1) should return -1 since there is no k such as 9¹ + 2² equals 92 * k
digPow(695, 2) should return 2 since 6² + 9³ + 5⁴= 1390 = 695 * 2
digPow(46288, 3) should return 51 since 4³ + 6⁴+ 2⁵ + 8⁶ + 8⁷ = 2360688 = 46288 * 51

Solution:

using System;
using System.Linq;

public class DigPow {
    public static long digPow(int n, int p) {
        Array squares = Enumerable.Range(p, n.ToString().Length).ToArray();
        long s = 
        long.Parse(string.Concat(
                    n.ToString().Select(
                        (x, i) => Math.Pow(double.Parse(x.ToString()), double.Parse(squares.GetValue(i).ToString()))
                    ).Sum()
         ));

         if (s % n == 0)
             return s / n;
            
         return -1;
  }
}

先宣告一個Array來存放我需要的次方升冪range

之後就是把數字拆開來分別去做次方運算 然後加總  之後再去做除法得出答案